Gold nanoparticle-spermidine complex blocks the inward rectifier potassium channel.

نویسنده

  • Chur Chin
چکیده

A previous study showed that negatively charged gold nanoparticles block ion pores by binding to the sulfur group of the cysteine loop of the ion channel when small molecules like amine lead the nanoparticles inside the ion pore. Cells were voltage clamped at -100 mV. Subsequently a bath application of 30 μM Ach produced a current followed by the extracellular application of 100 mM spermidine and 50 nM of nanoparticle complex. Peak amplitude was then recorded. The addition of Ach (30 uM) reversed the effect, and we recorded inhibition of the peak amplitude. We also recorded electrocardiogram (EKG) and the atria effective refractory period (AERP) after treatment with the complex in the atrium of a rabbit heart in a Langendorff apparatus. Upon external application of the complex, the Ach-activated current was blocked by 48.8% ± 3.1% with 82.7% ± 3.1% reversal. In recording the EKG and the AERP after the addition of the complex including 30 mM spermidine with 50 nM nanoparticles, the complete resolution of atrial fibrillation at 50 s and the elongation of AERP from 46 to 52 was observed, which unveils a new class 3 anti arrythmic agent using gold nanoparticles with spermidine. Negatively charged gold nanoparticles (0.8 nm) block ion pores after penetrating the cell membrane with spermidine, thus entering the cells with a polyamine transporter and acting at the intracellular face of the channel via binding to the sulfur group of the human inward rectifying potassium channel- I(KAch).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 9 1 integrin enhances cell migration by polyamine-mediated modulation of an inward-rectifier potassium channel

The 9 1 integrin accelerates cell migration through binding of spermidine/spermine acetyltransferase (SSAT) to the 9 cytoplasmic domain. We now show that SSAT enhances 9-mediated migration specifically through catabolism of spermidine and/or spermine. Because spermine and spermidine are effective blockers of K ion efflux through inward-rectifier K (Kir) channels, we examined the involvement of ...

متن کامل

The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines

The mechanism of inward rectification was examined in cell-attached and inside-out membrane patches from Xenopus oocytes expressing the cloned strong inward rectifier HRK1. Little or no outward current was measured in cell-attached patches. Inward currents reach their maximal value in two steps: an instantaneous phase followed by a time-dependent "activation" phase, requiring at least two expon...

متن کامل

Interaction Mechanisms between Polyamines and IRK1 Inward Rectifier K+ Channels

Rectification of macroscopic current through inward-rectifier K+ (Kir) channels reflects strong voltage dependence of channel block by intracellular cations such as polyamines. The voltage dependence results primarily from the movement of K+ ions across the transmembrane electric field, which accompanies the binding-unbinding of a blocker. Residues D172, E224, and E299 in IRK1 are critical for ...

متن کامل

Time-dependent Outward Currents through the Inward Rectifier Potassium Channel IRK1

Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines rem...

متن کامل

[K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1)

The effects of permeant (K+) ions on polyamine (PA)-induced rectification of cloned strong inwardly rectifying channels (IRK1, Kir2.1) expressed in Xenopus oocytes were examined using patch-clamp techniques. The kinetics of PA-induced rectification depend strongly on external, but not internal, K+ concentration. Increasing external [K+] speeds up "activation" kinetics and shifts rectification t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of cardiovascular disease

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2014